FreeRTOS下,串口中断与二值信号实现不定长数据接收。

基础知识点

串口中断种类

串口中断属于STM32本身的资源,不涉及到FreeRTOS,但可与FreeRTOS配合使用。

串口接收中断

中断标志为:USART_IT_RXNE,即rx none empty,串口只要接收到数据就触发中断,如果是接收一个字符串,则每接收到一个字符就触发一次中断

串口空闲中断

中断标志为:USART_IT_IDLE,idle即空闲的意思,串口空闲时触发的中断,当然也不是说串口空闲时就一直触发中断,而实在每个连续的接收完成后,触发中断,如果是接收一个字符串,则接收完整个字符串后,触发一次中断

所以,这两个中断可以配合使用,串口接收中断实时接收数据,接受完一串数据后,空闲中断被触发,就可以对接收的一串数据分析处理了。这种方式不需要知道每次字符串的具体长度,因而可以接收不定长的串口数据

信号量

FreeRTOS中的信号量是一种任务间通信的方式,信号量包括:二值信号量、互斥信号量、计数信号量,本次只使用二值信号量。

二值信号量

二值信号量只有两种状态,可以先通俗的理解为它就是个标志,0或1。信号量用于任务间的同步,FreeRTOS是多任务系统,不同任务间可能需要某种同步关系,如串口中断接收完数据后,数据分析处理任务才能拿到数据进行分析,这就是一种同步。

信号量的基本操作有获取信号量释放信号量,例如:数据分析处理任务需要处理串口数据时,可先尝试获取信号量,若获取不到,也就是信号量是0,则先进入阻塞等待,等待超时可先跳出,之后继续尝试获取信号量。串口空闲中断接受完一串数据后,可执行释放信号量操作,这时,数据分析处理任务就可以获取到信号量,进而可以处理串口数据了,实现了串口数据接收与数据处理的同步

接下来的程序思路如下:

API函数

创建二值信号量xSemaphoreCreateBinary()

函数原型(tasks.c中):

1
SemaphoreHandle_t xSemaphoreCreateBinary( void )

返回值:

  • SemaphoreHandle_t:创建成功的二值信号量句柄,失败返回NULL

释放信号量xSemaphoreGive()

函数原型(tasks.c中):

1
BaseType_t xSemaphoreGive( SemaphoreHandle_t xSemaphore )

参数:

  • xSemaphore:要释放的信号量句柄

返回值:

  • 释放成功返回pdPASS,失败返回errQUEUE_FULL

释放信号量(中断函数中)xSemaphoreGiveFromISR()

1
2
BaseType_t xSemaphoreGiveFromISR( SemaphoreHandle_t xSemaphore,
BaseType_t* pxHigherPriorityTaskWoken)

参数:

  • xSemaphore:同上
  • pxHigherPriorityTaskWoken:标记退出此函数后是否需要进行任务切换

返回值:

  • 同上

获取信号量xSemaphoreTake()

函数原型(tasks.c中):

1
2
BaseType_t xSemaphoreTake( SemaphoreHandle_t xSemaphore,
TickType_t xBlockTime)

参数:

  • xSemaphore:要释放的信号量句柄
  • xBlockTime:阻塞时间

返回值:

  • 获取成功返回pdTRUE,失败返回pdFALSE

获取信号量(中断函数中)xSemaphoreTakeFromISR()

1
2
BaseType_t xSemaphoreTakeFromISR( SemaphoreHandle_t xSemaphore,
BaseType_t* pxHigherPriorityTaskWoken)

参数:

  • xSemaphore:同上
  • pxHigherPriorityTaskWoken:标记退出此函数后是否需要进行任务切换

返回值:

  • 同上

编程要点

串口中断与释放信号量

串口配置时记得开启两个中断。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
//=======================================
//初始化IO 串口1
//bound:波特率
//=======================================
void uart_init(u32 bound)
{
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);//使能USART1时钟

//串口1对应引脚复用映射
GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); //GPIOA9复用为USART1
GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); //GPIOA10复用为USART1

//USART1端口配置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; //GPIOA9与GPIOA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //速度50MHz
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉
GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化PA9,PA10

//USART1 初始化设置
USART_InitStructure.USART_BaudRate = bound;//波特率设置
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式
USART_Init(USART1, &USART_InitStructure); //初始化串口1

USART_Cmd(USART1, ENABLE); //使能串口1

USART_ClearFlag(USART1, USART_FLAG_TC);

#if EN_USART1_RX
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启相关中断
USART_ITConfig(USART1, USART_IT_IDLE, ENABLE);

//Usart1 NVIC 配置
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//串口1中断通道
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=8;//抢占优先级8
NVIC_InitStructure.NVIC_IRQChannelSubPriority =0; //子优先级0
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器

#endif

}

中断服务函数的串口空闲中断,清除标志位只能通过先读SR寄存器,再读DR寄存器清除!

中断中使用信号量释放要使用ISR结尾的函数xSemaphoreGiveFromISR,否则程序就卡住了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
//=======================================
//串口1中断服务程序
//=======================================
void USART1_IRQHandler(void)
{
uint8_t data;//接收数据暂存变量
BaseType_t xHigherPriorityTaskWoken;

if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断
{
data =USART_ReceiveData(USART1);
Recv[rx_cnt++]=data;//接收的数据存入接收数组

USART_ClearITPendingBit(USART1,USART_IT_RXNE);
}

if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)//空闲中断
{
if(uartSemaphore!=NULL)
{
//释放二值信号量
xSemaphoreGiveFromISR(uartSemaphore,&xHigherPriorityTaskWoken); //释放二值信号量
}
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);//如果需要的话进行一次任务切换

data = USART1->SR;//串口空闲中断的中断标志只能通过先读SR寄存器,再读DR寄存器清除!
data = USART1->DR;
//USART_ClearITPendingBit(USART1,USART_IT_IDLE);//这种方式无效

//rx_cnt=0;
}
}

获取信号量

编写一个任务来实现串口数据的获取,该任务不断尝试获取信号量,获取成功后,对数据进行处理。

获取信号量xSemaphoreTake,阻塞(等待时间)10ms,获取不到信号量则向下执行,每个任务都是一个死循环,马上又会进行信号量获取。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
//打印任务函数
void print_task(void *pvParameters)
{
int count=0;
BaseType_t err = pdFALSE;

int size=50;
uint8_t buf[64];//最多只取前64个数据

//清空本地接收数组
memset(buf,0,size);

while(1)
{
err=xSemaphoreTake(uartSemaphore,10); //获取信号量
if(err==pdTRUE) //获取信号量成功
{
//printf("%s",Data);
if(rx_cnt < size)//收到的数据长度在size范围内
{
//void *memcpy(void *str1, const void *str2, size_t n)
//从存储区 str2 复制 n 个字节到存储区 str1。
memcpy(buf,Recv,rx_cnt);//有几个复制几个
count=rx_cnt;
//printf("%s\r\n", buf);
}
else//收到的数据长度太长了
{
memcpy(buf,Recv,size);//只复制size个
count=size;
}
rx_cnt=0;
}

if(count>0)
{
count=0;
printf("receive:%s",buf);

//------------------------------------------------------------------------------
//这里可以继续对buf进行分析和处理,比如根据buf的不同内容执行不同的小任务

}
}
}

一个小应用

结合之前文章介绍的字符串操作的相关知识:C语言字符串相关函数使用示例 strtok_r strstr strtok atoi,可以对“命令+参数”型的字符串数据进行处理。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
//先判断指令名称
char *cmd;//表示命令
char *paras;//表示命令后的参数
cmd = strtok_r((char*)buf, " ", &paras);//这里有点小问题,不带参数的命令,后面需要一个空格

char *ret;
int i;
for (i = 0; i < N;i++)
{
ret = strstr(struct_dostr1[i].name, cmd);
if(ret!=NULL)
{
// printf("find cmd in funname[%d]\r\n", i);
break;
}
}
if(i==N)
{
printf("can't find cmd in funname[]\r\n");
}
else
{
//是有效的指令,继续判断后续参数
char* para[4]={0};//限定最多接收4个参数
para[0] = strtok(paras, " ");
int j= 1;
while(paras != NULL)//这里有点小问题,不可以提前结束
{
para[j++] = strtok(NULL, " ");
if(j==4)
break;
}

//执行对应的函数
struct_dostr1[i].fun(para);
}

最后的函数执行,是通过定义一个结构体,将字符命令与函数指针对应起来:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#define N 2
typedef struct struct_dostr
{
char name[32];
int (*fun)(char *argv[]);
}struct_dostr;

struct_dostr struct_dostr1[N]={
{"hello",hello},
{"led", led},
};

int hello(char* p[])
{
printf("hello~~~~~~~~~~\r\n");
return 0;
}

int led(char* p[])
{
int p0,p1;
p0=atoi(p[0]);
p1=atoi(p[1]);

printf("get led: %d, %d\r\n",p0,p1);
return 0;
}

实验结果

通过串口发送hello led 80 5,可以看到想要的处理结果:

1
2
3
4
receive:hello   
hello~~~~~~~~~~
receive:led 80 5
get led: 80, 5

完整工程代码已保存至GitHub:https://github.com/xxpcb/FreeRTOS-STM32F407-examples